Comments on a recent note on the Schrodinger equation with a delta '-interaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 263903
(http://iopscience.iop.org/0305-4470/26/15/037)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 19:24

Please note that terms and conditions apply.

COMMENT

Comments on a recent note on the Schrödinger equation with a δ^{\prime}-interaction

S Albeverio \dagger, F Gesztesy \ddagger and H Holden§
\dagger Faculty of Mathematics, Ruhr-Universität Bochum, W-4630 Bochum 1, Federal Republic of Germany
\ddagger Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
\S Department of Mathematical Sciences, Norwegian Institute of Technology, University of Trondheim, N-7034 Trondheim, Norway

Received 15 June 1992, accepted 23 July 1992

Abstract

It is argued that a recent letter by Bao-Heng Zhao on the one-dimensional Schrödinger equation with a δ^{\prime}-interaction is seriously flawed and hence-arrives at wrong conclusions.

In the recent letter [1], Bao-Heng Zhao studied the one-dimensional Schrödinger equation with a δ^{\prime}-interaction, i.e.

$$
\begin{equation*}
-\psi^{\prime \prime}(x)+c \delta^{\prime}(x) \psi(x)=E \psi(x) \quad x \in \mathbb{R} \tag{1}
\end{equation*}
$$

with c a coupling constant, and concluded that (1) can be replaced by the free Schrödinger equation

$$
\begin{equation*}
-\psi^{\prime \prime}(x)=E \psi(x) \tag{2}
\end{equation*}
$$

supplemented with the 'boundary conditions'

$$
\begin{align*}
& \psi\left(0^{+}\right)=\psi\left(0^{-}\right)=\psi(0)=0 \tag{3a}\\
& \psi^{\prime}\left(0^{+}\right)-\psi^{\prime}\left(0^{-}\right)=-c \psi^{\prime}(0) \tag{3b}
\end{align*}
$$

(Actually the author in [1], in addition to (3b), also mentions the boundary condition $\psi^{\prime}\left(0^{+}\right)-\psi^{\prime}(0)=-c \psi^{\prime}(0)$ in his equation (2) but this appears to be a typographical error.)

In order to arrive at ($3 a$), ($3 b$), the author in [1] makes use of the distributional relation

$$
\begin{equation*}
\delta^{\prime}(x) \psi(x)=\delta^{\prime}(x) \psi(0)-\delta(x) \psi^{\prime}(0) \tag{4}
\end{equation*}
$$

Given the conditions $(3 a),(3 b)$, the author in [1] then goes on and claims that the following boundary conditions:

$$
\begin{align*}
& \psi\left(0^{+}\right)-\psi\left(0^{-}\right)=c \psi^{\prime}(0) \quad c \in \mathbb{R} \\
& \psi^{\prime}\left(0^{+}\right)=\psi^{\prime}\left(0^{-}\right) \tag{5}
\end{align*}
$$

employed in references [2,3], are 'irrelevant' in connection with (1).
Here we would like to point out the following facts which prove that the reasoning in [1] is seriously flawed and hence wrong conclusions have been reached:
(i) Condition ($3 a$) by itself is already the boundary condition for a unique self-adjoint extension of the minimal operator $H_{0, \text { min }}=-\mathrm{d}^{2} / \mathrm{d} x^{2}$ defined on the domain $C_{0}^{\infty}(\mathbb{R} \backslash\{0\})$ in the usual Hilbert space $L^{2}(\mathbb{R})$. In fact, ($3 a$) represents precisely the boundary condition of the self-adjoint Dirichlet extension H_{0}^{D} of $H_{0, \text { min }}$, where

$$
\begin{align*}
& H_{0}^{D}=-\frac{\mathrm{d}^{2}}{\mathrm{dx}} \tag{6}\\
& \mathcal{D}\left(\dot{H}_{0}^{D}\right)=\left\{\psi \in H^{2,1}(\mathbb{R}) \cap H^{2,2}(\mathbb{R} \backslash\{0\}) \mid \psi(0)=0\right\}
\end{align*}
$$

(Note that $\psi \in H^{2,1}(\mathbb{R})$ implies $\psi\left(0^{+}\right)=\psi\left(0^{-}\right)=\psi(0)$ and hence the boundary condition in (6) is idential to ($3 a$). Here $H^{m, n}(\mathbb{R}), m, n \in \mathrm{~N}$ denote the usual Sobolev spaces.) The operator H_{0}^{D} in (6) is precisely the direct sum of the two Dirichlet Laplacians on ($0, \infty$) and $(-\infty, 0)$, respectively.

Due to this elementary fact any additional boundary condition, such as ($3 b$), together with ($3 a$) necessarily represents a non-self-adjoint operator which is entirely unacceptable as a Hamiltonian in a quantum mechanical context. On the contrary, the boundary condition (5) used in $[2,3]$, defines a family of self-adjoint extensions of $H_{0, \text { min }}$.
(ii) Equation (3b) is ill-defined as it stands since the symbol $\psi^{\prime}(0)$ is not explained in [1]. More importantly, however, equation (3b) is based on the distributional relation (4) which clearly requires at least the differentiability of ψ at $x=0$. Hence if taken seriously, equation (3b) either leads to the trivial case $c=0$, i.e. to $\psi^{\prime}\left(0^{+}\right)=\psi^{\prime}\left(0^{-}\right)=\psi^{\prime}(0)$, or to $\psi^{\prime}\left(0^{+}\right)=\psi^{\prime}\left(0^{-}\right)=\psi^{\prime}(0)=0$. As is stressed in (i) above, both conditions, when combined with ($3 a$), yield non-self-adjoint operators in $L^{2}(\mathbb{R})$. We also note the trivial fact that $\psi^{\prime}(0)$ does not exist in general (and hence the use of (4) is not permitted) as the standard theory of self-adjoint extensions of $H_{0, \text { min }}$ (whose deficiency indices are (2,2)) readily reveals. This is clearly reflected in the Dirichlet extension H_{0}^{D} in (6).

Moreover, in the special case $c=0$ the boundary conditions ($3 a$), ($3 b$) (in contrast to the case $c=0$ in (5)) do not reduce to the free kinetic energy operator $H_{0}=-\mathrm{d}^{2} / \mathrm{d} x^{2}$ on the domain $H^{2,2}(\mathbb{R})$.
(iii) Finally, we would like to point out that, as has been stressed in [3, appendix G], the δ^{\prime}-interaction in [1] should not be taken too literally. In fact, when considering this interaction in momentum space, the δ^{\prime}-interaction, in contrast to the δ-interaction in onedimension, but similary to the two- and three-dimensional δ-interactions, requires a certain coupling constant renomalization procedure. For the three-dimensional δ-interaction this is of course well known and goes back to a celebrated paper by Berezin and Faddeev [4]. Analogous considerations in connection with (1) then lead to the self-adjoint boundary conditions (5) and hence justify their use in this context $[2,3,5,6]$.

References

[1] Bao-Heng Zhao 1992 J. Phys. A: Math. Gen. 25 L617
[2] Gesztesy F and Holden H 1987 J. Phys. A: Math. Gen. 205157
[3] Albeverio S, Gesztesy H, Hølegh-Krohn R and Holden H 1988 Solvable Models in Quantum Mechanics (Berlin: Springer)
[4] Berezin F A and Faddeev L D 1961 Sov. Math. Dokl. 2372
[5] Grossmann A, Ȟøegh-Krohn R and Mebkhout M 1980 J. Math. Phys. 212376
[6] Šeba P 1988 Rep. Math. Phys. 24111

